Figure 1: Map showing location of the Mud Creek slide. Before and after photos are present showing the spectacular movement of material. Also present are other similar landslides and instrumentation
|
Geologic time is slow. Very slow. When geologists talk about mountains rising, such as the Himalayas, they speak on the millimeter per year scale. Every so often, however, drastic movement occurs. On May 17th2017, the Mud Creek landslide occurred off of Highway 1 in Big Sur (fig.1). The slide was so large, it added 13 new acres to the coastline of California in an instant (fig. 2); amazingly, no one was injured. Since then, scientists have been able to research the slide to figure out how and why the slope failed so dramatically.
Figure 2: Oblique time lapse view of the slope before failure, after, and the process of rebuilding the road.
|
This event was what’s known as a bedrock landslide, which occur at large scales and often move very large, deep masses of earth. Bedrock landslides are highly dependent on groundwater rather than surface water. If the water table rises high enough into the soil that overlies the bedrock, it will effectively cause the overlying rock and soil to float. Water finds its way between individual grains and exerts a pressure on each grain, pushing them away from each other. This force destabilizes the rock, leading to rapid and catastrophic slope failure.
It takes time for groundwater to move and cause the water table to rise. Groundwater flow isn’t like a raging river of water moving through the subsurface: in reality, groundwater saturates deeper rocks, sort of like a sponge, and only slowly creeps along if there is sufficient water pressure. Because of this, bedrock landslides can occur on seemingly innocuous, sunny days often months after a large rainfall event. In the case of the Mud Creek landslide, the last large rainfall events occurred in February, March, and April (fig. 3), but the slide didn’t occur until mid-May.
The Mud Creek landslide is interesting because it was actually moving steadily before the catastrophic slide occurred. Using remote sensing satellites, researchers were able to track the motion of the Mud Creek landslide for the past several years before the big slide occurred. Before total failure, the slope was moving at a stable rate, creeping along at about .24 to .43 m/yr (fig. 4). During this time (2009-2017), California was in a historic drought. Small rainfall events during the winters would cause the velocity of the slide to increase slightly, but it wasn’t until the historically wet winter of 2017 that the slide started to accelerate and deviate from past years’ motion (fig.4).
Researchers attribute the sudden catastrophic failure of the Mud Creek landslide to rapid changes in climate. The fast transition from a drought to very intense rain events caused the Mud Creek landslide to become unstable very quickly. Other similar, slow moving slides in the area remained stable, likely due to their smaller slope angles.
California is currently experiencing another historically wet winter after a small drought, and Sierra snowpack currently stands at about 146% of what it was last year. What will this mean for catastrophic slope failure in California? If the Mud Creek landslide is any indication, it will likely mean more landslides during the spring months as snow melts and percolates through the subsurface. Keep a close eye on the coastal ranges of California this coming year and hopefully we’ll see some geology in action!
Handwerger, A.L., Huang, M., Fielding, E.J., Booth, A.M., and Bürgmann, R., 2019, A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure: Scientific Reports, p. 1–12, doi:10.1038/s41598-018-38300-0.
https://earthobservatory.nasa.gov/images/144552/a-strong-start-to-sierra-snowpack?utm_source=TWITTER&utm_medium=NASA&utm_campaign=NASASocial&linkId=63616203
No comments:
Post a Comment